

Esame finale per Consulente finanziario/a con attestato professionale federale

Raccolta di formule

Autore: Iwan Brot

È consentito portare questa raccolta di formule e utilizzarla durante gli esami.

Indice raccolta formule

Conversione di un rendimento semplice in un rendimento continuo	6
Conversione di un rendimento continuo in un rendimento semplice	6
Calcolo di interessi composti (valore futuro o Future Value) con dei rendimenti semplici	6
Calcolo di interessi composti con dei rendimenti continui	6
Calcolo del valore attuale (Iniziale – Present Value) in funzione del bisogno in capitale futuro (Valore semplice)	7
Calcolo del valore attuale in funzione del bisogno in capitale futuro (Valori continui)	7
Calcolo del rendimento totale semplice	7
Calcolo del rendimento totale costante	7
Calcolo del rendimento annuo medio semplice (più di un anno)	9
Calcolo del rendimento annuo medio continuo (più di un anno)	9
Calcolo del rendimento annuo medio semplice (meno di un anno)	8
Calcolo del rendimento annuo medio continuo (meno di un anno)	9
Differenti periodi di rendimento semplice ; Calcolo di rendimento totale semplice	11
Differenti periodi di rendimento continuo; Calcolo di rendimento totale continuo	11
Calcolo del rendimento ponderato in funzione del tempo	12
Cacolo del rendimento ponderato in funzione del capitale	12
Calcolo del rendimento reale (matematicamente corretto)	13
Calcolo del rendimento reale (approssimazione)	13
Calcolo del prezzo di emissione di un credito contabile	13
Calcolo del rendimento annuo in funzione del prezzo di emissione	
Rendimento totale di un obbligazione	14

Rendimento della cedola di un obbligazione	14
Rendimento del corso di obbligazione	14
Rendimento diretto di un obbligazione	14
Calcolo del rendimento alla scadenza secondo il metodo pratico (buona approssimazione)	15
Calcolo del rendimento alla scadenza (approssimazione)	15
Calcolo del rendimento esatto alla scadenza	15
Calcolo degli interessi in corso in un obbligazione	16
Prezzo di conversione di un obbligazione convertibile	16
Parità di conversione di un obbligazione convertibile	16
Premio di conversione di un obbligazione convertibile	16
Premio di conversione di un obbligazione convertibile su base annua	17
Calcolo del rischio di corso di un obbligazione convertibile	17
Parità dell'opzione di un obbligazione a opzione	17
Prezzo dell'opzione di un obbligazione a opzione	17
Prezzo dell'opzione di un obbligazione a opzione su base annua	18
Calcolo del valore attuale di un obbligazione	18
Calcolo del valore attuale stimato di un obbligazione (approssimazione)	18
Calcolo della duration di Macaulay	18
Calcolo della duration modificata	19
Calcolo approssimativo della variazione del prezzo di un obbligazione	19
Calcolo approssimativo della variazione del prezzo di un obbligazione	19
Valore della variazione approssimativa di prezzo	20
Calcolo del punto Break-even di un corso di cambio	20
Calcolo del rendimento sulla moneta	20

Calcolo del rendimento totale sulla moneta	21
Calcolo del diritto d'opzione (di sottoscrizione) in caso di aumento di capitale	21
Calcolo del corso teorico delle azioni dopo l'aumento di capitale	22
Rendimento dell'utile (guadagno) di un azione	22
Payout-Ratio di una società	22
Rendimento del dividendo di un azione	23
Rendimento Cash-Flow di un azione	23
Rendimento dei fondi propri di un azione	23
Rapporto corso/beneficio (PE ratio) con il beneficio attuale	24
Rapporto corso/beneficio (PE Ratio) con il beneficio futuro (stima del beneficio)	24
Rapporto corso/beneficio considerando una crescita futura dei risultati (espressi in %) (PEG; Price-Earnings to Growth Ratio)	24
Rapporto corso / cifra d'affari	25
Rapporto corso/valore contabile	25
Rapporto corso/ valore intrinseco	25
Calcolo di un piano risparmio, fine periodo (premio annuo)	25
Calcolo di un piano risparmio, fine periodo (premio mensile)	26
Calcolo di un piano risparmio, inizio periodo (premio annuo)	26
Calcolo di un piano risparmio, inizio periodo (premio mensile)	26
Montante di risparmio necessario a fine periodo (annuo / termine scaduto) per ottenere un determinato capitale	27
Montante di risparmio necessario a fine periodo (mensile/ termine scaduto) per ottenere un determinato capitale	27
Montante di risparmio necessario ad inizio periodo (annuo) per ottenere un determinato capitale	27
Montante di risparmio necessario ad inizio periodo (mensile) per ottenere un determinato capitale	28
Bisogno in capitale per ottenere la rendita desiderata (fine periodo annuo) su un determinato periodo (annuità)	28
Bisogno in capitale per ottenere la rendita desiderata (fine periodo mensile) su un determinato periodo (annuità)	28

Bisogno in capitale per ottenere la rendita desiderata (ad'inizio anno) su un determinato periodo (annuità)	27
Bisogno in capitale per ottenere la rendita desiderata (ad'inizio mese) su un determinato periodo (annuità)	2
Valore della rendita (a fine anno / termine scaduto) proveniente da capitali esistenti su un determinato periodo	29
Valore della rendita (a fine mese / termine scaduto) proveniente da capitali esistenti su un determinato periodo	28
Valore della rendita (ad'inizio anno) proveniente da capitali esistenti su un determinato periodo	30
Valore della rendita (ad'inizio mese) proveniente da capitali esistenti su un determinato periodo	30
Calcolo del Sharpe Ratio	
Calcolo del Ratio di Treynor	3
Calcolo dell'Alpha di Jensen	3
Calcolo dell'Information Ratio	3
Calcolo del rendimento del Portafoglio in rapporto al rischio del mercato	3
Calcolo del Beta del Portafoglio	32
Valore intrinseco di un opzione Call (secondo Ratio)	
Valore intrinseco di un opzione Call (secondo il rapporto di sottoscrizione)	3
Valore tempo di un opzione Call	
Valore intrinseco di un opzione Put (secondo Ratio)	
Valore intrinseco di un opzione Put (secondo il rapporto di sottoscrizione)	3
Valore tempo di un opzione Put	

ESEMPIO DI CALCOLO

Conversione di un rendimento semplice in un rendimento continuo

In = logaritmo naturale

R = periodo di rendimento semplice in scrittura matematica; esempio 8.77% = 0.0877

In (1 + R) = rendimento continuo

 $\ln(1+0.0877) = 0.08406 = 8.41\%$

Conversione di un rendimento continuo in un rendimento semplice

e = numero e (base dei logaritmi) (2.71828182846) rendimento continuo in scrittura matematica ; esempio 8.406% = 0.08406

erendimento costante – 1 =

 $e^{0.08406} - 1 = 0.08769 = 8.77\%$

Calcolo di interessi composti (valore futuro o Future Value) con dei rendimenti semplici

B = valore attuale, nell'esempio 100

n = durata totale, nell'esempio 3 anni

R = rendimento semplice, nell'esempio 2.75%,

in scrittura matematica = 0.0275

$$B \times (1 + R)^n$$

 $B + (r \times n)$

$$100 \times (1 + 0.0275)^3 = 108.478 = 108.48$$

Calcolo di interessi composti con dei rendimenti continui

B = valore attuale, nell'esempio 100

n = durata totale, nell'esempio 3 anni

R = rendimento semplice, nell'esempio 2.75%, ciò che da un Rendimento continuo di 2.713%

r = rendimento continuo, nell'esempio 2.713% = 2.713

$$100 + (2.713 \times 3) = 108.139 = 108.14$$

$$e^{0.0814} - 1 = 0.08480 = 8.48\%$$

ESEMPIO DI CALCOLO

Calcolo del valore attuale (Iniziale - Present Value)

in funzione del bisogno in capitale futuro

(Valore semplice)

K = Bisogno di capitali al tempo x (futuro), nell'esempio CHF 108.48

n = Durata globale, nell'esempio 3 anni

R = rendimento semplice (tasso di sconto), nell'esempio 2.75%, in scrittura matematica = 0.0275 $\frac{K}{(1+R)^n}$

 $\frac{108.48}{\left(1+0.0275\right)^3} = 100$

Calcolo del valore attuale in funzione del bisogno in capitale futuro (Valori continui)

K = Bisogno di capitali al tempo x (futuro), nell'esempio CHF 108.48

n = Durata globale, nell'esempio 3 anni

R = rendimento semplice (tasso di sconto) nell'esempio 2.75%

Ciò che corrisponde a un rendimento continuo 2.71% = 2.71

r = rendimento costante, nell'esempio 2.71% = 2.71

 $K - r \times n$

 $108.15 - 2.718 \times 3 = 100$

Calcolo del rendimento totale semplice

Capitale finale
Capitale iniziale - 1

 $\frac{111.11}{100} - 1 = 0.11110 = 11.11\%$

Calcolo del rendimento totale costante

$$\ln\left(\frac{\text{capitale finale}}{\text{capitale iniziale}}\right)$$

$$\ln\left(\frac{111.11}{100}\right) = 0.10535 = 10.54\%$$

 $e^{0.10535} - 1 = 0.11109 = 11.11\%$

ESEMPIO DI CALCOLO

Calcolo del rendimento annuo medio semplice (più di un anno)

n = durata totale, nell'esempio 3 anni

$$\left(\frac{\text{capitale finale}}{\text{capitale iniziale}}\right)^{(1/n)} - 1$$

$$\left(\frac{111.11}{100}\right)^{(1/3)} - 1 = 0.03574 = 3.57\%$$

$$\sqrt[3]{\left(\frac{111.11}{100}\right)} - 1 = 0.03574 = 3.57\%$$

Calcolo del rendimento annuo medio continuo (più di un anno)

n = durata totale, nell'esempio 3 anni

$$\frac{\ln\left(\frac{\text{capitale finale}}{\text{capitale iniziale}}\right)}{n}$$

$$\frac{\ln\left(\frac{111.11}{100}\right)}{3} = 0.03511 = 3.51\%$$

$$e^{0.03511} - 1 = 0.03573 = 3.57\%$$

Calcolo del rendimento annuale medio semplice (meno di un anno)

n = Numero di periodi per un anno nell'esempio 4 mesi (3 x 4 = 12 mesi)

$$\left(\frac{\text{capitale finale}}{\text{capitale iniziale}}\right)^{n} - 1$$

$$\left(\frac{111.11}{100}\right)^3 - 1 = 0.37170 = 37.17\%$$

Calcolo del rendimento annuo medio continuo

(meno di un anno)

$$\ln \left(\frac{\text{capitale finale}}{\text{capitale iniziale}} \right) x \text{ periodo di tempo}$$

$$\ln\left(\frac{111.11}{100}\right) \times 3 = 0.31605 = 31.61\%$$

 $e^{0.31605} - 1 = 0.37169 = 37.17\%$

ESEMPIO DI CALCOLO

Differenti periodi di rendimento semplice; Calcolo di rendimento totale semplice

R = periodo di rendimento semplice in scrittura
matematica ; esempio
$$3.75\% = 0.0375$$

 $4.25\% = 0.0425$

$$\left(1+R_{z_1}\right)\times\left(1+R_{z_2}\right)\times...\times\left(1+R_{z_N}\right)-1$$

$$(1+R_{z_1}) \times (1+R_{z_2}) \times ... \times (1+R_{z_N}) - 1$$
 $(1+0.0375) \times (1+0.0425) - 1 = 0.08159 = 8.16\%$

ln(1+0.0375) + ln(1+0.0425) = 0.07843 = 7.84%

Differenti periodi di rendimento continuo: Calcolo di rendimento totale continuo

oppure se dei rendimenti continui esistono già

r = periodo di rendimento costante in scrittura matematica; esempio 3.68% = 0.0368 4.16% = 0.0416

$$ln(1+R_{Z1}) + ln(1+R_{Z2}) + ... + ln(1+R_{ZN})$$

$$e^{0.0784} - 1 = 0.08155 = 8.16\%$$

$$r_{Z1} + r_{Z2} + ... + r_{ZN}$$

$$0.0368 + 0.0416 = 0.0784 = 7.84\%$$

$$e^{0.0784} - 1 = 0.08155 = 8.16\%$$

ESEMPIO DI CALCOLO

Calcolo del rendimento ponderato in

$$\sqrt{(1+R_{z_1})\times(1+R_{z_2})\times...\times(1+R_{z_N})}-1$$

$$\sqrt[n]{(1+R_{z_1})\times(1+R_{z_2})\times...\times(1+R_{z_N})} - 1 \qquad \qquad 3.75\sqrt[n]{(1+0.0375)\times(1+0.0425)} - 1 = 0.02113 = 2.11\%$$

Funzione del tempo

R = periodo di rendimento semplice in scrittura matematica; esempio 3.75% = 0.0375

$$4.25\% = 0.0425$$

n = numero di periodi per anno, nell'esempio 3.75 (cioè 3 anni e 9 mesi, 9/12 = 0.75 + 3 = 3.75)

Il rendimento in funzione del tempo è articolato attorno al flusso di versamenti (risparmio) e riflette unicamente il guadagno medio effettuato sulla durata. Il rendimento totale ponderato in funzione del tempo si calcola come il rendimento totale semplice.

Cacolo del rendimento ponderato in funzione del capitale

$$K_1 = K_0 \times (1 + IRR) + \sum_{t=1}^{T-1} Transactions \times (1 + IRR)^{\frac{T-t}{T}}$$

La rappresentazione formale è la seguente :

Una calcolatrice professionale si occupa del processo di iterazione e calcola il rendimento in capitale. Senza una tale calcolatrice, è necessario mettere in pratica il processo di iterazione con delle approssimazioni.

Con il rendimento ponderato in funzione del capitale, il capitale di partenza (K₀), così come tutte le altre transazioni fino alla data termine, sono maggiorati dal rendimento ponderato in funzione del capitale da determinare (IRR), in modo che il totale di queste transazioni (K_1) esprima il valore finale del portafoglio.

ESEMPIO DI CALCOLO

Calcolo del rendimento reale (matematicamente corretto)

R = interessi in scrittura matematica; esempio 5.35% = 0.0535 L = inflazione in scrittura matematica;

I = inflazione in scrittura matematica; esempio 2.21% = 0.0221

$$\frac{(1+R)}{(1+I)}$$
 - 1 = rendimento reale

$$\frac{(1+0.0535)}{(1+0.0221)} - 1 = 0.03072 = 3.07\%$$

Calcolo del rendimento reale (approssimazione)

R = interessi, esempio 5.35% I = inflazione, esempio 2.21%

$$R - I \approx rendimento reale$$

$$5.35\% - 2.21\% \approx 3.14\%$$

Calcolo del prezzo di emissione di un

credito contabile

R = rendimento annuo atteso (« mirato ») in scrittura, matematica, nell'esempio = 2.75% = 0.0275

T = durata del credito contabile, nell'esempio 270 jours = 270

$$\frac{100}{1 + \left(\frac{\text{T x R}}{360}\right)}$$

$$\frac{100}{1 + \left(\frac{270 \times 0.0275}{360}\right)} = 97.979\% = 97.98\%$$

Calcolo del rendimento annuo in funzione del prezzo di emissione

Il prezzo di rimborso é sempre del 100% Il prezzo di emissione, nell'esempio = 97.98% Durata nell'esempio = 270 giorni

$$\frac{100 - 97.98}{97.98} \times 360 = 0.02748 = 2.75\%$$

ESEMPIO DI CALCOLO

Rendimento totale di un obbligazione

Corso finale, nell'esempio 101.50% = 101.50 Corso iniziale, nell'esempio 100.75% = 100.75 C = Cedola, nell'esempio 3% = 3

$$\frac{101.50 - 100.75 + 3}{100.75} = 0.03722 = 3.72\%$$

Rendimento della cedola di un obbligazione

C = Cedola, nell'esempio 3% = 3 Corso dell'obbligazione un anno fa, nell' esempio 100.75% = 100.75

$$\frac{3}{100.75} = 0.02977 = 2.98\%$$

Rendimento del corso di un obbligazione

Prezzo a fine periodo, nell'esempio 101.50% = 101.50 Prezzo ad inizio periodo, nell'esempio 100.75% = 100.75

$$\frac{101.50 - 100.75}{100.75} = 0.00744 = 0.74\%$$

Rendimento diretto di un obbligazione

C = Cedola, nell'esempio 3% = 3 Corso attuale dell'obbligazione Nell'esempio 101.50% = 101.50

$$\frac{3}{101.50} = 0.02955 = 2.96\%$$

ESEMPIO DI CALCOLO

Calcolo del rendimento alla scadenza secondo il metodo pratico (buona approssimazione)

C = Cedola, nell'esempio 4% = 4 Prezzo di rimborso, nell'esempio 100% = 100 Prezzo del giorno, nell'esempio 105.77% = 105.77 n = Durata rimanente, nell'esempio 3 anni = 3

$$\frac{C + \frac{\text{prezzo di rimborso - prezzo del giorno}}{n}}{\frac{\text{prezzo di rimborso + prezzo del giorno}}{2}}$$

$$\frac{4 + \frac{100 - 105.77}{3}}{\frac{100 + 105.77}{2}} = 0.02018 = 2.02\%$$

Calcolo del rendimento alla scadenza (approssimazione)

C = Cedola, nell'esempio 4% = 4 Prezzo di rimborso, nell'esempio 100% = 100 Prezzo del giorno, nell'esempio 105.77% = 105.77 n = Durata rimanente, nell'esempio 3 anni = 3

$$C + \frac{prezzo \ di \ rimborso - prezzo \ del \ giorno}{n}$$

$$4 + \frac{100 - 105.77}{3} = 2.076 = 2.08\%$$

Calcolo del rendimento esatto alla scadenza (Processo di iterazione, calcolatrice professionale necessaria)

C = Cedola V = Rendimento alla scadenza ricercato

$$\frac{C}{(1+V)} + \frac{C}{(1+V)^n} + \dots + \frac{C}{(1+V)^n} + \frac{C+R}{(1+V)^n}$$

Entrare nell'HP come segue:

Valore attuale (PV) = -105.77

Valore finale (FV) = 100

Tasso (PMT) = 4

Durata (N) = 3

Mode = End

R = Prezzo di rimborso

Soluzione dopo i = 1.999 = 2.00%

Con HP17, si può anche ottenere la soluzione

Con il calcolatore obbligatorio.

IAI	F>>>
TEMA	

ESEMPIO DI CALCOLO

Calcolo degli interessi in corso in un obbligazione

N = Valore nominale, nell'esempio CHF 100'000

C = Cedola, nell'esempio 4% = 0.04

n = durata, nell'esempio 165 giorni

$$\frac{N \times C \times n}{360}$$

$$\frac{100'000 \times 0.04 \times 165}{360} = 1'833.33$$

Prezzo di conversione di un obbligazione convertibile

Montante nominale necessario nell'esempio CHF 5'000.00 = 5'000

Valore del sottostante nell'esempio 8.725

$$\frac{5'000}{8.725} = 573.065 = 573.07$$

Parità di conversione di un obbligazione convertibile

NN = Montante nominale necessario, Nell'esempio CHF 5'000.00 = 5'000 Corso dell'obbligazione, nell'esempio 102% = 1.02 Valore del sottostante, nell'esempio 8.725

$$\frac{5'000 \times 1.02}{8.725} = 584.527 = 584.53$$

Premio di conversione di un obbligazione convertibile

Parità di conversione, nell'esempio 584.53 Corso in borsa del sottostante, nell'esempio 525.00

$$\frac{584.53}{525.00} - 1 = 0.11339 = 11.34\%$$

ESEMPIO DI CALCOLO

Premio di conversione di un obbligazione convertibile su base annua

Premio di conversione, nell'esempio 11.34% = 0.1134 Durata rimanente 3 anni e 9 mesi = 3.75

$$\frac{0.1134}{3.75} = 0.03024 = 3.02\%$$

Calcolo del rischio di corso di un obbligazione convertibile

Corso dell'obbligazione convertibile, nell'esempio 102% = 1.02

Corso dell'obbligazione convertibile - valore nominale Corso dell'obbligazione convertibile

$$\frac{1.02 - 0.98}{1.02} = 0.03921 = 3.92\%$$

Parità dell'opzione di un obbligazione a opzione

Numero di opzioni, nell'esempio 50 OP = prezzo dell'opzione, nell'esempio 0.75 A = prezzo d'esercizio, nell'esempio 212.50

Valore nominale, nell'esempio 98% = 0.98

$$50 \times 0.75 + 212.50 = 250.00$$

Prezzo dell'opzione di un obbligazione a opzione

Parità dell'opzione, nell'esempio 250.00 Corso del sottostante in borsa, nell'esempio 230.00

$$\frac{250.00}{230.00} - 1 = 0.08695 = 8.70\%$$

FSFMPIO DI CALCOLO

Prezzo dell'opzione di un obbligazione a opzione su base annua

Prezzo dell'opzione, nell'esempio 8.70% = 0.0870 Durata rimanente 4 mesi e 3 giorni = 0.3417

$$\frac{0.0870}{0.3417} = 0.25460 = 25.46\%$$

Calcolo del valore attuale di un obbligazione

C = Cedola, nell'esempio 4% = 4 i = interesse attuale del mercato, nell'esempio 2% = 0.02

n = durata, nell'esempio 3 anni

Il prezzo di rimborso é sempre del 100%

$$C \times \frac{(1+i)^n - 1}{(1+i)^n \times i} + \frac{\text{Prezzo di rimborso}}{(1+i)^n}$$

$$C \times \frac{(1+i)^{n}-1}{(1+i)^{n} \times i} + \frac{\text{Prezzo di rimborso}}{(1+i)^{n}} \qquad \qquad 4 \times \frac{(1+0.02)^{3}-1}{(1+0.02)^{3} \times 0.02} + \frac{100}{(1+0.02)^{3}} = 105.767 = 105.77\%$$

Calcolo del valore attuale stimato di un obbligazione (approssimazione)

C = Cedola, nell'esempio 4% = 4

i = interesse attuale del mercato, nell'esempio 2% = 2

n = durata, nell'esempio 3 anni

Il prezzo di rimborso é sempre del 100%

$$(C-i)$$
 x n + prezzo di rimborso

$$(4 - 2) \times 3 + 100 = 106 \approx 106\%$$

Calcolo della duration di Macaulay

i = interesse attuale del mercato. nell'esempio 2% = 0.02

n = durata, nell'esempio 3 ans

C = Cedola, nell'esempio 4% = 4

R = Prezzo di rimborso, nell'esempio 100%

$$\frac{1+i}{i} - \frac{n \times C + R \times (1+i - n \times i)}{C \times ((1+i)^n - 1) + R \times i}$$

$$\frac{1+i}{i} - \frac{n \times C + R \times (1+i-n \times i)}{C \times ((1+i)^n - 1) + R \times i} \qquad \frac{1+0.02}{0.02} - \frac{3 \times 4 + 100 \times (1+0.02 - 3 \times 0.02)}{4 \times ((1+0.02)^3 - 1) + 100 \times 0.02} = 2.889 = 2.89 \text{ ans}$$

ESEMPIO DI CALCOLO

Calcolo della duration modificata

Y = Rendimento alla scadenza, nell'esempio 2% = 0.02

$$\frac{D}{1+Y}$$

$$\frac{2.89}{1.02} = 2.833 = 2.83$$

Calcolo approssimativo della variazione del prezzo di un obbligazione

M = duration modificata, nell'esempio 2.83

a = adattamento del rendimento alla scadenza, nell'esempio il rendimento alla scadenza **aumenta** dello 0.25% - M x a

- 2.83 x 0.25 = - 0.7075 = - 0.71%

Calcolo approssimativo della variazione del prezzo di un obbligazione

M = duration modificata, nell'esempio 2.83

a = adattamento del rendimento alla scadenza, nell'esempio il rendimento alla scadenza **diminuisce** dello 0.25% - M x a

 $-2.83 \times -0.25 = 0.7075 = 0.71\%$

Nota: Per il calcolo si utilizza sempre la duration modificata con il segno (-). Ciò per ottenere direttamente la risposta matematica corretta.

IAI	F>>>
TFMΔ	

ESEMPIO DI CALCOLO

 $105.77 \times (1 - 0.0071) = 105.019 = 105.02\%$

Valore della variazione approssimativa di prezzo

$$B \times (1 - P)$$

Il valore attuale di 105.77% si riduce di -0.71%, nel caso di un aumento del rendimento alla scadenza di 0.25%, in questo esempio a 105.02%

$$B \times (1 + P)$$

$$105.77 \times (1 + 0.0071) = 106.520 = 106.52\%$$

Il valore attuale di 105.77% aumenta di +0.71%, nel caso di un aumento degli intressi del mercato di 0.25%, in questo esempio a 106.520 = 106.52%

Calcolo del punto Break-even di un corso di cambio

n = durata rimanente, nell'esempio 6 anni aW = Corso di vendita attuale,

nell'esempio 1.5197

$$\frac{\left(1+i_{CHF}\right)^{ans}}{\left(1+i_{FW}\right)^{ans}} \times aW$$

$$\frac{\left(1+0.0275\right)^6}{\left(1+0.0555\right)^6} \times 1.5197 = 1.2933$$

Cacolo del rendimento sulla moneta

$$W_{\rm t}$$
 = corso di cambio attuale, nell'esempio 1.0925

$$W_{t-l}$$
 = corso di cambio al momento dell'acquisto nell'esempio 1.2257

$$\frac{W_t}{W_{t-1}} - 1$$

$$\frac{1.0925}{1.2257} - 1 = -0.10867 = -10.87\%$$

FORMULA

ESEMPIO DI CALCOLO

Calcolo del rendimento totale sulla moneta

 R_i = rendimento locale, nell'esempio 10.87% = 0.1087

 $R_{\rm w}$ = rendimento sulla moneta, nell' -10.87% = -0.1087

$$\left[\left(1+R_{i}\right)\times\left(1+R_{w}\right)\right]-1$$

$$[(1+0.1087)\times(1-0.1087)]-1=-0.01181=-1.18\%$$

Calcolo del diritto d'opzione (di sottoscrizione) in caso di aumento di capitale

Corso attuale in borsa, nell'esempio 49.50

BP = prezzo di sottoscrizione delle nuove azioni, Nell'esempio 42.00

BV = rapporto di sottoscrizione, nell'esempio 13:2

corso attuale in borsa - BP (BV) + 1 $\frac{49.50 - 42.00}{(13:2) + 1} = 1.00$

$$\frac{49.50 - 42.00}{(13:2) + 1} = 1.00$$

oppure

aB = corso attuale in borsa, nell'esempio 49.50

AaA = numero di vecchie azioni, nell'esempio 13

AnA = numero di nuove azioni, nell'esempio 2

BP = prezzo di sottoscrizione delle nuove azioni, Nell'esempio 42.00

$$aB - \frac{(AaA \times aB + AnA \times B)}{AaA + AnA}$$

$$aB - \frac{(AaA \times aB + AnA \times BP)}{AaA + AnA}$$
 $49.50 - \frac{(13 \times 49.50 + 2 \times 42.00)}{13 + 2} = 1.00$

ESEMPIO DI CALCOLO

Calcolo del corso teorico delle azioni dopo l'aumento di capitale

AaA = Numero di vecchie azioni, nell'esempio 13

aB = corso attuale in borsa, nell'esempio 49.50

AnA = Numero di nuove azioni, nell'esempio 2

BP = Prezzo di sottoscrizione delle nuove azioni, Nell'esempio 42.00 $\frac{(AaA \times aB + AnA \times BP)}{AaA + AnA}$

 $\frac{(13 \times 49.50 + 2 \times 42.00)}{13 + 2} = 48.50$

oppure

BV = Relazione d'acquisto, nell'esempio 13:2

aB = corso attuale in borsa, nell'esempio 49.50

BP = prezzo di sottoscrizione delle nuove azioni, Nell'esempio 42.00 $\frac{BV \times aB + BP}{(BV) + 1}$

 $\frac{(13:2) \times 49.50 + 42}{(13:2) + 1} = 48.50$

Rendimento dell'utile (guadagno) di un azione

Utile per azione, nell'esempio 6.25 Corso (dell'azione) in borsa, nell'esempio 101.35 utile_(per azione).
corso in borsa_(per azione)

 $\frac{6.25}{101.35} = 0.06166 = 6.17\%$

Payout-Ratio di una società

Dividendo lordo, nell'esempio 2.75 Utile per azione, nell'esempio 6.25 dividendo lordo_(per azione)
utile_(per azione)

$$\frac{2.75}{6.25} = 0.44 = 44.00\%$$

FORMULA

ESEMPIO DI CALCOLO

Rendimento del dividendo di un azione

Dividendo lordo, nell'esempio 2.75 Corso (dell'azione) in borsa, nell'esempio 101.35 dividendo lordo_(per azione)
corso in borsa_(per azione)

$$\frac{2.75}{101.35} = 0.02713 = 2.71\%$$

Rendimento Cash-Flow di un azione

Cash-Flow, nell'esempio 7.35 Corso (dell'azione) in borsa, nell'esempio 101.35 Cash Flow_(per azione).
corso in borsa_(per azione)

$$\frac{7.35}{101.35} = 0.07252 = 7.25\%$$

Rendimento dei fondi propri di un azione

Utile per azione, nell'esempio 6.25 Media dei fondi propri per azione, Nell'esempio 62.50

$$\frac{6.25}{62.50} = 0.10 = 10.00\%$$

ESEMPIO DI CALCOLO

Rapporto corso/beneficio (PE ratio) con il beneficio attuale

Corso in borsa, nell'esempio 101.35 Utile (beneficio), nell'esempio 6.25

Beneficio, nell'esempio 6.1667% = 0.061667 corso in borsa_(per azione)
beneficio_(per azione)

$$\frac{101.35}{6.25} = 16.216 \cong 16.2$$

oppure

$$\frac{1}{0.061667} = 16.216 \cong 16.2$$

Rapporto corso/beneficio (PE Ratio) con il beneficio futuro (stima del beneficio)

Corso in borsa, nell'esempio 101.35 Beneficio futuro, nell'esempio 6.85 (stima)

$$\frac{101.35}{6.85} = 14.795 \cong 14.8$$

Rapporto corso/beneficio considerando una crescita futura dei risultati (espressi in %) (PEG; Price-Earnings to Growth Ratio)

$$\frac{14.8}{12} = 1.233 = 1.23$$

TEMA FORMULA ESEMPIO DI CALCOLO

Rapporto corso / cifra d'affari

Corso in borsa, nell'esempio = 101.35 Cifra d'affari, nell'esempio = 25.25 corso in borsa_(per azione) cifra d'affari_(per azione)

$$\frac{101.35}{25.25} = 4.013 = 4.01$$

Rapporto corso/valore contabile

Corso in borsa, nell'esempio = 101.35 Valore contabile, nell'esempio = 155.55 corso in borsa_(per azione) valore contabile_(per azione)

$$\frac{101.35}{155.55} = 0.651 = 0.65$$

Rapporto corso/valore intrinseco

Corso in borsa, nell'esempio = 101.35 Valore intrinseco, nell'esempio = 190.00 (nel valore intrinseco vi sono, in più del valore contabile, le riserve latenti)

<u>corso in borsa_(per azione)</u>. valore intrinseco_(per azione)

$$\frac{101.35}{190.00} = 0.533 = 0.53$$

Calcolo di un piano risparmio, fine periodo (premio annuo)

R = rendimento annuo semplice, Nell'esempio 3.75% = 0.0375

n = durata, nell'esempio 20 anni

S = montante di risparmio annuo, nell'esempio 4'800.00

$$\frac{\left(1+R\right)^{n}-1}{R}\times S$$

$$\frac{\left(1+0.0375\right)^{20}-1}{0.0375} \times 4'800.00 = 139'283.46$$

FORMULA

 $\frac{(1+R)^n-1}{P}\times S$

ESEMPIO DI CALCOLO

 $\frac{\left(1+0.003125\right)^{240}-1}{0.003125}\times400.00=142'659.30$

Calcolo di un piano risparmio, fine periodo (premio mensile)

R = rendimento mensile semplice, nell'esempio $0.3125\% = 0.003125 \rightarrow 0.0375/12$

n = durata, nell'esempio 240 mesi (20 anni)

S = montante di risparmio mensile, nell'esempio 400.00

Calcolo di un piano risparmio, inizio periodo (premio annuo)

R = rendimento annuo semplice, Nell'esempio 3.75% = 0.0375

n = durata, nell'esempio 20 anni

S = montante di risparmio annuo, nell'esempio 4'800.00

$$\frac{\left(\left(1+R\right)^{n}-1\right)\times\left(1+R\right)}{R}\times S$$

$$\frac{((1+R)^{n}-1)\times(1+R)}{R}\times S \qquad \frac{((1+0.0375)^{20}-1)\times(1+R)}{0.0375}\times 4'800.00 = 144'506.59$$

Calcolo di un piano risparmio, inizio periodo (premio mensile)

R = rendimento mensile semplice, Nell'esempio $0.3125\% = 0.003125 \rightarrow 0.0375/12$

n = durata, nell'esempio 240 mesi (20 anni)

S = montante di risparmio mensile, nell'esempio 400.00

$$\frac{\left(\left(1+R\right)^{n}-1\right)\times\left(1+R\right)}{R}\times S$$

$$\frac{((1+0.003125)^{240}-1)\times(1+0.003125)}{0.003125}\times400.00=143'105.11$$

FORMULA

ESEMPIO DI CALCOLO

Montante di risparmio necessario a fine periodo (annuo / termine scaduto) per ottenere un determinato capitale

R = rendimento annuo semplice, Nell'esempio 3.75% = 0.0375 n = durata, nell'esempio 20 anni bE= montante desiderato, nell'esempio 139'283.46

Montante di risparmio necessario a fine periodo (mensile/ termine scaduto) per ottenere un determinato capitale

R = rendimento mensile semplice, Nell'esempio 0.3125% = 0.003125 → 0.0375/12 n = durata, nell'esempio 240 mesi bE= montante desiderato, nell'esempio 142'659.30

Montante di risparmio necessario ad inizio periodo (annuo) per ottenere un determinato capitale

R = rendimento annuo semplice, Nell'esempio 3.75% = 0.0375 n = durata, nell'esempio 20 anni bE= montante desiderato, nell'esempio 144'506.56

$$\frac{R}{\left(\left(1+R\right)^{n}-1\right)} \times bE$$

$$\frac{0.0375}{\left(\left(1+0.0375\right)^{20}-1\right)} \times 139'283.46 = 4'800.00$$

$$\frac{R}{\left(\left(1+R\right)^{n}-1\right)} \times bE$$

$$\frac{0.003125}{\left(\left(1+0.003125\right)^{240}-1\right)} \times 142'659.30 = 400.00$$

$$\frac{R}{\left(\left(1+R\right)^{n}-1\right)\times\left(1+R\right)}\times bE$$

$$\frac{0.0375}{\left(\left(1+0.0375\right)^{20}-1\right)\times\left(1+0.0375\right)}\times144'506.56=4'800.00$$

FORMULA

ESEMPIO DI CALCOLO

Montante di risparmio necessario ad inizio periodo (mensile) per ottenere un determinato capitale

$$\frac{R}{\left(\left(1+R\right)^{n}-1\right)\times\left(1+R\right)}\times bE$$

$$\frac{0.003125}{\left(\left(1+0.003125\right)^{240}-1\right)\times\left(1+0.003125\right)} \times 143'105.11 = 400.00$$

Bisogno in capitale per ottenere la rendita desiderata (fine periodo annuo) su un determinato periodo (annuità)

$$\frac{\left(1+R\right)^{n}-1}{\left(1+R\right)^{n}\times R}\times RB$$

$$\frac{\left(1+0.0375\right)^{20}-1}{\left(1+0.0375\right)^{20}\times0.0375}\times24'000.00=333'508.90$$

Bisogno in capitale per ottenere la rendita desiderata (fine periodo mensile) su un determinato periodo (annuità)

$$\frac{(1+R)^n-1}{(1+R)^n\times R}\times RB$$

$$\frac{\left(1+0.003125\right)^{240}-1}{\left(1+0.003125\right)^{240}\times0.003125}\times2'000.00=337'331.66$$

FORMULA

ESEMPIO DI CALCOLO

Bisogno in capitale per ottenere la rendita desiderata (ad'inizio anno) su un determinato periodo (annuità)

R = rendimento annuo semplice, Nell'esempio 3.75% = 0.0375 n = durata, nell'esempio 20 anni RB = rendita desiderata, nell'esempio 24'000.00

$$\frac{(1+R)^n - 1 \times (1+R)}{(1+R)^n \times R} \times RB$$

$$\frac{\left(1+0.0375\right)^{20}-1\times\left(1+0.0375\right)}{\left(1+0.0375\right)^{20}\times0.0375}\times24'000.00=346'015.48$$

Bisogno in capitale per ottenere la rendita desiderata (ad'inizio mese) su un determinato periodo (annuità)

R = rendimento mensile semplice, Nell'esempio 0.3125% = 0.003125 → 0.0375/12 n = durata, nell'esempio 240 mesi RB = rendita desiderata, nell'esempio 2'000.00

$$\frac{(1+R)^n - 1 \times (1+R)}{(1+R)^n \times R} \times RB$$

$$\frac{\left(1+0.003125\right)^{240}-1\times\left(1+0.003125\right)}{\left(1+0.003125\right)^{240}\times0.003125}\times2'000.00=338'385.82$$

Valore della rendita (a fine anno / termine scaduto) proveniente da capitali esistenti su un determinato periodo

R = rendimento annuo semplice, nell'esempio 3.75% = 0.0375

n = durata, nell'esempio 20 anni

K = capitali esistenti, nell'esempio 333'508.90

$$\frac{(1+R)^n \times R}{(1+R)^n - 1} \times K$$

$$\frac{(1+0.0375)^{20} \times 0.0375}{(1+0.0375)^{20} - 1} \times 333'508.90 = 24'000.00$$

TEMA FORMULA

ESEMPIO DI CALCOLO

Valore della rendita (a fine mese / termine scaduto) proveniente da capitali esistenti su un determinato periodo

R = rendimento annuo semplice, nell'esempio
$$0.3125\% = 0.003125 \rightarrow 0.0375/12$$

 $\frac{(1+R)^n \times R}{(1+R)^n - 1} \times K$

$$\frac{\left(1+0.003125\right)^{240}\times0.003125}{\left(1+0.003125\right)^{240}-1}\times337'331.66=2'000.00$$

Valore della rendita (ad'inizio anno) proveniente da capitali esistenti su un determinato periodo

$$\frac{(1+R)^n \times R}{((1+R)^n-1)\times (1+R)} \times K$$

$$\frac{(1+0.0375)^{20} \times 0.0375}{((1+0.0375)^{20}-1) \times (1+0.0375)} \times 346'015.45 = 24'000.00$$

Valore della rendita (ad'inizio mese) proveniente da capitali esistenti su un determinato periodo

R = rendimento mensile semplice, nell'esempio
$$0.3125\% = 0.003125 \rightarrow 0.0375/12$$

$$\frac{\left(1+R\right)^{n}\times R}{\left(\left(1+R\right)^{n}-1\right)\times\left(1+R\right)}\times k$$

$$\frac{\left(1+R\right)^{n}\times R}{\left(\left(1+R\right)^{n}-1\right)\times\left(1+R\right)}\times K$$

$$\frac{\left(1+0.003125\right)^{240}\times0.003125}{\left(\left(1+0.003125\right)^{240}-1\right)\times\left(1+0.003125\right)}\times338'385.82=2'000.00$$

FORMULA

ESEMPIO DI CALCOLO

Calcolo del Sharpe Ratio

 $r_{\rm i}$ = rendimento continuo del Portafoglio, nell'esempio 6.06% = 0.0606 $r_{\rm c}$ = tasso d'interesse senza rischio,

 $r_{\rm f}$ = tasso d'interesse senza rischio nell'esempio 1.98% = 0.0198

 σ_i = Volatilità, nell'esempio 14.34% = 0.1434

$$\frac{r_i - r_f}{\sigma_i}$$

$$\frac{0.0606 - 0.0198}{0.1434} = 0.2845 = 0.28$$

Calcolo del Ratio di Treynor

r_i = rendimento continuo del Portafoglio, nell'esempio 6.06% = 0.0606

 r_f = tasso d'interesse senza rischio, nell'esempio 1.98% = 0.0198

β_i = Beta del Portafoglio, nell'esempio 1.04

$$\frac{\mathbf{r}_{i} - \mathbf{r}_{f}}{\beta_{i}}$$

$$\frac{0.0606 - 0.0198}{1.04} = 0.03923 = 3.92\%$$

Calcolo dell'Alpha di Jensen

r_i = rendimento continuo del Portafoglio, nell'esempio 6.06% = 0.0606

 r_f = tasso d'interesse senza rischio, nell'esempio 1.98% = 0.0198

 β_i = Beta del Portafoglio, nell'esempio 1.04

 $r_{\rm m}$ = rendimento costante del Benchmark, nell'esempio 6.53% = 0.0653

$$r_i - (r_f + \beta_i \times (r_m - r_f))$$

$$0.0606 - (0.0198 + 1.04 \times (0.0653 - 0.0198)) =$$

 $-0.00652 = -0.65\%$

FORMULA

ESEMPIO DI CALCOLO

Calcolo dell'Information Ratio

$$\begin{split} r_{i} &= \text{rendimento continuo del Portafoglio,} \\ &\quad \text{nell'esempio } 6.06\% = 0.0606 \\ r_{b} &= \text{rendimento continuo del Benchmark,} \\ &\quad \text{nell'esempio } 6.53\% = 0.0653 \\ TE_{i} &= \text{Tracking Error, nell'esempio } 8.25\% = 0.0825 \end{split}$$

$$\frac{\mathbf{r}_{i} - \mathbf{r}_{b}}{TE_{i}}$$

$$\frac{0.0606 - 0.0653}{0.0825} = -0.056 = -0.06$$

Calcolo del rendimento del Portafoglio in rapporto al rischio del mercato

Beta del Portafoglio, nell'esempio 1.08 BR = Rendimento del Benchmark, nell'esempio 6.75% = 0.0675 Portfoliobeta x BR

$$1.08 \times 0.0675 = 0.0729 = 7.29\%$$

Calcolo del Beta del Portafoglio

 β = Beta, nell'esempio A = 1.07 e B = 0.93 DW = Valore di deposito, nell'esempio A = 100 e B = 200 GDW = valore totale di deposito, nell'esempio 300

$$\frac{\beta_{A} \times DW_{A} + \beta_{B} \times DWt_{B}}{GDW}$$

$$\frac{1.07 \times 100 + 0.93 \times 200}{300} = 0.9766 \approx 0.98$$

U

Il calcolo del Beta del Portafoglio può anche essere rappresentato come segue:

$$\beta_{\text{Portfolio}} = \sum_{i=1}^{n} W_i \times \beta_i$$

$$\frac{100}{300} \times 1.07 + \frac{200}{300} \times 0.93 = 0.9766 \approx 0.98$$

FORMULA

ESEMPIO DI CALCOLO

Valore intrinseco di un opzione Call (secondo Ratio)

$$\frac{KB - A}{R}$$

$$\frac{45.00 - 40.00}{20} = 0.25$$

Valore intrinseco di un opzione Call (secondo il rapporto di sottoscrizione)

$$(KB - A) \times BV$$

$$(45.00 - 40.00) \times 0.05 = 0.25$$

Valore tempo di un opzione Call

$$0.40 - 0.25 = 0.15$$

Valore intrinseco di un opzione Put (secondo Ratio)

$$\frac{A - KB}{R}$$

$$\frac{45.00 - 40.00}{20} = 0.25$$

IAF	
THEME	

FORMULE

EXEMPLE DE CALCUL

Valore intrinseco di un opzione Put (secondo il rapporto di sottoscrizione)

$$(A - KB) \times BV$$

 $(45.00 - 40.00) \times 0.05 = 0.25$

A = Prezzo di esercizio, nell'esempio 45.00

KB = Corso, valore di base, nell'esempio 40.00

BV = Rapporto di sottoscrizione, nell'esempio 1:20

Valore tempo di un opzione Put

OP = Prezzo dell'Opzione, nell'esempio 0.40

iW = valore intrinseco, nell'esempio 0.25

OP – iW

0.40 - 0.25 = 0.15