

Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis

Formelsammlung / Anwendungsbeispiele für den HP10bll+

Diese Formelsammlung darf an die Prüfungen mitgebracht und benutzt werden.

Bitte beachten Sie, dass diese Formelsammlung – zum besseren Verständnis der verschiedenen Aspekte – deutlich mehr Formeln enthält, als für die Prüfungen effektiv benötigt werden. Massgebend für den Prüfungsstoff sind einzig die Prüfungsordnung und die Wegleitung.

Stand 16. Dezember 2024. Änderungen vorbehalten.

Inhaltsverzeichnis Formelsammlung

Zinseszinsberechnung (Zukunftswert oder auch Future Value) bei einfachen Renditen	7
Barwertberechnung (Gegenwartswert oder auch Present Value) auf Grund künftigem Kapitalbedarf (einfache Werte)	7
Berechnung der einfachen Gesamtrendite	
Berechnung der einfachen durchschnittlichen Jahresrendite (Überjährigkeit)	8
Berechnung der einfachen durchschnittlichen Jahresrendite (Unterjährigkeit)	
Unterschiedliche einfache Periodenrenditen; Berechnung der einfachen Gesamtrendite	8
Berechnung der zeitgewichteten Durchschnittsrendite	9
Berechnung der ungefähren Realrendite (Annäherungsberechnung)	10
Berechnung der währungsbereinigten Gesamtrendite	10
Notwendiger monatlicher Sparbetrag für Sparzielerreichung (nachschüssig)	
Notwendiger monatlicher Sparbetrag für Sparzielerreichung (nachschüssig) (auf Jahresbasis)	10
Notwendiger monatlicher Sparbetrag für Sparzielerreichung (nachschüssig) (auf Monatsbasis)	
Notwendiger monatlicher Sparbetrag für Sparzielerreichung (vorschüssig)	11
Notwendiger monatlicher Sparbetrag für Sparzielerreichung (vorschüssig) (auf Jahresbasis)	
Notwendiger monatlicher Sparbetrag für Sparzielerreichung (vorschüssig) (auf Monatsbasis)	11
Notwendige Rendite für Sparzielerreichung (nachschüssig)	12
Notwendige Rendite für Sparzielerreichung (vorschüssig)	12
Spardauer für Sparzielerreichung (nachschüssig)	12

Spardauer für Sparzielerreichung (vorschüssig)	13
Entspardauer bei monatlichen Bezügen (nachschüssig)	13
Entspardauer bei monatlichen Bezügen (vorschüssig)	13
Endkapital bei monatlichen Sparbeiträgen (nachschüssig)	
Endkapital bei monatlichen Sparbeiträgen (vorschüssig)	14
Notwendiges bestehendes Kapital für Erreichung Sparziel bei monatlichen Sparbeiträgen (nachschüssig)	14
Notwendiges bestehendes Kapital für Erreichung Sparziel bei monatlichen Sparbeiträgen (vorschüssig)	15
Sparplanberechnung nachschüssig (Jahresprämie)	15
Sparplanberechnung nachschüssig (Monatsprämie)	15
Sparplanberechnung vorschüssig (Jahresprämie)	
Sparplanberechnung vorschüssig (Monatsprämie)	16
Kapitalbedarf für gewünschte Rente (nachschüssig auf Jahresbasis) über einen bestimmten Zeitraum (Annuität)	16
Kapitalbedarf für gewünschte Rente (nachschüssig auf Monatsbasis) über einen bestimmten Zeitraum (Annuität)	16
Kapitalbedarf für gewünschte Rente (vorschüssig auf Jahresbasis) über einen bestimmten Zeitraum (Annuität)	16
Kapitalbedarf für gewünschte Rente (vorschüssig auf Monatsbasis) über einen bestimmten Zeitraum (Annuität)	17
Rentenhöhe (nachschüssig auf Jahresbasis) bei vorhandenem Kapital über einen bestimmten Zeitraum	17
Rentenhöhe (nachschüssig auf Monatsbasis) bei vorhandenem Kapital über einen bestimmten Zeitraum	17
Rentenhöhe (vorschüssig auf Jahresbasis) bei vorhandenem Kapital über einen bestimmten Zeitraum	17
Rentenhöhe (vorschüssig auf Monatsbasis) bei vorhandenem Kapital über einen bestimmten Zeitraum	18
Berechnung des Emissionspreises bei einer Geldmarktbuchforderung	18
Berechnung der Jahresrendite einer Geldmarktbuchforderung bei vorhandenem Emissionspreis	18
Periodenrendite einer Obligation	18

Couponrendite einer Obligation	19
Preisrendite einer Obligation	19
Direkte Rendite einer Obligation	
Direkte Rendite einer Obligation nach Steuern und Inflation	19
Berechnung der Verfallrendite nach Praktikermethode (guter Schätzwert)	19
Berechnung der Verfallrendite (Annäherungsberechnung)	20
Berechnung der Verfallrendite	20
Berechnung der Verfallrendite nach Steuern und Inflation	
Marchzinsberechnung bei einer Obligation	21
Wandelpreis einer Wandelobligation	21
Wandelparität einer Wandelobligation	21
Wandelprämie über eine Wandelobligation	21
Wandelprämie über eine Wandelobligation auf Jahresbasis	21
Renditebereinigtes Kursrisiko einer Wandelobligation	22
Optionsparität einer Optionsobligation	
Optionsprämie über eine Optionsobligation	22
Optionsprämie über eine Optionsobligation auf Jahresbasis	22
Barwertberechnung einer Obligation	22
Berechnung des ungefähren Barwertes einer Obligation (Annäherungsberechnung)	23
Berechnung der Macaulay Duration	23
Berechnung der Modified Duration	23
Berechnung der approximativen Preisänderung einer Obligation	23

Aussagekraft der approximativen Preisänderung	24
Berechnung Wert Bezugsrecht bei einer Aktienkapitalerhöhung	24
Berechnung theoretischer Aktienkurs nach Kapitalerhöhung	25
Gewinnrendite einer Aktie	25
Payout-Ratio einer Gesellschaft	25
Dividendenrendite einer Aktie	25
Cash-Flow Rendite einer Aktie	26
Eigenkapitalrendite einer Aktie	
Kurs-Gewinn-Verhältnis (KGV / PE) mit aktuellem Gewinn	26
Kurs-Gewinn-Verhältnis (KGV / PE) mit zukünftigem Gewinn (Gewinnschätzung)	26
Kurs-Gewinn-Verhältnis unter Berücksichtigung des künftigen Gewinnwachstumes (in % ausgedrückt) (PEG; Price-Earnings to Growth Ratio)	26
Kurs-Umsatz-Verhältnis (KUV / PS)	27
Kurs-Buchwert-Verhältnis (KUB / PB)	27
Kurs-Substanzwert-Verhältnis (KSV)	27
Rendite von Anlagefonds vor Steuern (bei Thesaurierung der Erträge)	27
Rendite von Anlagefonds nach Steuern (bei Thesaurierung der Erträge)	27
Berechnung der Sharpe Ratio	28
Berechnung der Treynor Ratio	28
Berechnung des Jensen's Alpha	28
Berechnung der Portfoliorendite, bezogen auf das Marktrisiko	29
Berechnung des Portfoliobetas	29
Innerer Wert pro Calloption (bei gegebener Ratio)	29

nnerer Wert pro Calloption (bei gegebenem Bezugsverhältnis)	30
Zeitwert pro Calloption	
nnerer Wert pro Putoption (bei gegebener Ratio)	
nnerer Wert pro Putoption (bei gegebenem Bezugsverhältnis)	
Zeitwert pro Putoption	30
Wahrscheinlichkeitsberechnungen	31
Ein-Sigma-Fall (68%)	31
Zwei-Sigma-Fall (95%)	31
Drei-Sigma-Fall (99%)	31

WAS	FORMEL	ZAHLENBEISPIEL				
Zinseszinsberechnung (Zukunftswert oder auch Future Value) bei einfachen Renditen						
B = Barwert, im Beispiel 100 n = Gesamtlaufzeit, im Beispiel 3 Jahre R = einfache Rendite, im Beispiel 2.75%, geschrieben in mathematischer Schreibweise = 0.0275	$B \cdot (1+R)^n$	$100 \cdot (1 + 0.0275)^3 = 108.478 = 108.48$				
Barwertberechnung (Gegenwartswert oder	auch Present Value) auf Grund künftige	m Kapitalbedarf (einfache Werte)				
 K = Kapitalbedarf zum Zeitpunkt X (Zukunft), im Beispiel CHF 108.48 n = Gesamtlaufzeit, im Beispiel 3 Jahre R = einfache Rendite (Diskontierungssatz), im Beispiel 2.75%, geschrieben in mathematischer Schreibweise = 0.0275 	$\frac{K}{(1+R)^n}$	$\frac{108.48}{\left(1+0.0275\right)^3} = 100$				
Berechnung der einfachen Gesamtrendite						
Endkapital im Beispiel: CHF 111.11 Anfangskapital im Beispiel: CHF 100	Endkapital Anfangskapital -1	$\frac{111.11}{100} - 1 = 0.11110 = 11.11\%$				

WAS	FORMEL	ZAHLENBEISPIEL					
Berechnung der einfachen durchschnittlichen Jahresrendite (Überjährigkeit)							
dkapital im Beispiel: CHF 111.11 $ \left(\frac{\text{Endkapital}}{\text{Anfangskapital}}\right)^{(1/n)} - 1 $ e Gesamtlaufzeit, im Beispiel 3 Jahre $ \frac{\left(\frac{\text{Endkapital}}{\text{Anfangskapital}}\right)^{(1/n)}}{\left(\frac{\text{Endkapital}}{\text{Anfangskapital}}\right)} - 1 $		$\left(\frac{111.11}{100}\right)^{(1/3)} - 1 = 0.03574 = 3.57\%$ $\sqrt[3]{\left(\frac{111.11}{100}\right)} - 1 = 0.03574 = 3.57\%$					
Berechnung der einfachen durchschnittliche	n Jahresrendite (Unterjährigkeit)						
n = Zeitperiode für Jahresbasis im Beispiel 4 Monate (3 x 4 = 12 Monate)	$\left(\frac{\text{Endkapital}}{\text{Anfangskapital}}\right)^{n} - 1$	$\left(\frac{111.11}{100}\right)^3 - 1 = 0.37170 = 37.17\%$					
Unterschiedliche einfache Periodenrenditen; Berechnung der einfachen Gesamtrendite							
R = einfache Periodenrendite in mathematischer Schreibweise; Beispiel 3.75% = 0.0375 4.25% = 0.0425	$(1 + R_{Z1}) \cdot (1 + R_{Z2}) \cdot \cdot (1 + R_{ZN}) - 1$	$(1+0.0375) \cdot (1+0.0425) - 1 = 0.08159 = 8.16\%$					

WAS	FORMEL	ZAHLENBEISPIEL
Berechnung der zeitgewichteten Durchschni	ttsrendite	
R = einfache Periodenrendite in mathematischer Schreibweise; Beispiel 3.75% = 0.0375 4.25% = 0.0425	$\sqrt[n]{(1+R_{z_1})\cdot(1+R_{z_2})\cdot\cdot(1+R_{z_N})}-1$	$3.75\sqrt{(1+0.0375)\cdot(1+0.0425)} - 1 = 0.02113 = 2.11\%$
n = Zeitperiode für Jahresbasis, im Beispiel 3.75 (entspricht 3 Jahren und 9 Monaten, da $9/12 = 0.75 + 3 = 3.75$)		
Vermögensbestand im Zeitablauf. Die zeitgewichte	ete Gesamtrendite errechnet sich analog der	rtschafteten durchschnittlichen Ertrag auf dem schwankenden Berechnung einer einfachen Gesamtrendite.
Berechnung der mathematisch korrekten Re	ealrendite	
R = Zinssatz in mathematischer Schreibweise; Beispiel 5.35% = 0.0535 I = Inflationsrate in mathematischer Schreibweise; Beispiel 2.21% = 0.0221	$\frac{(1+R)}{(1+I)} - 1 = Real rendite$	$\frac{(1+0.0535)}{(1+0.0221)} - 1 = 0.03072 = 3.07\%$
Berechnung der ungefähren Realrendite (An	näherungsberechnung)	
R = Zinssatz , Beispiel 5.35% I = Inflation, Beispiel 2.21%	$R - I \approx Realrendite$	5.35% − 2.21% ≈ 3.14%

WAS	FORMEL			ZAHLENBEISPIEL		
Berechnung der Währungsrendite			<u> </u>			
$W_{\rm t}$ = aktueller Wechselkurs, im Beispiel 1.0925 $W_{\rm t-l}$ = Wechselkurs im Kaufzeitpunkt im Beispiel 1.2257	$\frac{W_{t}}{W_{t-1}}-1$		$\frac{1.0925}{1.2257}$	-1=-0.10867 = -10.8	7%	
Berechnung der währungsbereinigten Gesa	mtrendite		•			
$R_{\rm i}$ = Lokalrendite, im Beispiel 10.87% = 0.1087 $R_{\rm w}$ = Währungsrendite, im Beispiel -10.87% = -0.1087	$[(1+R_{i})\cdot(1+R_{w})]$]–1	[(1+0.10	087) · (1 – 0.1087)] – 1 =	= -0.01181 = -1.18%	
Notwendiger monatlicher Sparbetrag für Sp	arzielerreichung (n	achschüssig)	ı			
N = Gesamtlaufzeit in Monaten, im Beispiel	ZAHLENBEISPII	EL MIT EING	ABE IM HP10 bii	+ / FORMEL		
120 Monate (10 Jahre)	N	I/YR	PV	PMT	FV	
I/YR = 2.50% (Jahresrendite) PV = 0 (noch kein Sparkapital vorhanden) PMT = Gesuchter monatlicher Sparbeitrag FV = 100'000 (gewünschtes Endkapital)	Lösung:	2.50	0	(-)734.37	100'000	
Notwendiger monatlicher Sparbetrag für Sp	arzielerreichung (n	achschüssig)	(auf Jahresbasis)			
R = einfache Jahresrendite, im Beispiel 3.75% = 0.0375 n = Laufzeit, im Beispiel 20 Jahre bE= bestimmter Endwert, im Beispiel 139'283.46	$\frac{R}{\left(\left(1+R\right)^{n}-1\right)} \cdot bE$		$\frac{0.0}{(1+0.03)}$	$\frac{0375}{375)^{20}-1} \cdot 139'283.46$	6 = 4'800.00	

WAS	FORMEL		ZAHLENB	ZAHLENBEISPIEL		
Notwendiger monatlicher Sparbetrag für Spa	arzielerreichung (na	achschüssig) (auf N	Monatsbasis)			
R = Monatsrendite, im Beispiel 0.3125% = 0.003125 → 0.0375/12 n = Laufzeit, im Beispiel 240 Monate bE= bestimmter Endwert, im Beispiel 142'659.30	$\frac{R}{\left(\left(1+R\right)^{n}-1\right)} \cdot bE$		$\frac{0.003125}{\left(\left(1+0.003125\right)^{240}-1\right)} \cdot 142'659.30 = 400.00$			
Notwendiger monatlicher Sparbetrag für Spa	arzielerreichung (vo	orschüssig)				
N = Gesamtlaufzeit in Monaten, im Beispiel	ZAHLENBEISPIE	L MIT EINGABE I	M HP10 bII+ / I	FORMEL		
120 Monate (10 Jahre) I/YR = 2.50% (Jahresrendite)	N	I/YR	PV	PMT	FV	
PV = 0 (noch kein Sparkapital vorhanden) PMT = Gesuchter monatlicher Sparbeitrag	Lösung:	2.50	0	(-)732.84	100'000	
FV = 100'000 (gewünschtes Endkapital)						
Notwendiger monatlicher Sparbetrag für Spa	arzielerreichung (vo	orschüssig) (auf Ja	hresbasis)			
R = einfache Jahresrendite, im Beispiel 3.75% = 0.0375 n = Laufzeit, im Beispiel 20 Jahre bE= bestimmter Endwert, im Beispiel 144'506.56	$\frac{R}{\left(\left(1+R\right)^{n}-1\right)\cdot\left(1+R\right)}\cdot bE$		$\frac{0.0375}{((1+0.0375)^{20}-1)\cdot(1+0.0375)}\cdot144'506.56 = 4'800.00$		-·144'506.56 = 4'800.00	
Notwendiger monatlicher Sparbetrag für Spa	arzielerreichung (vo	orschüssig) (auf M	onatsbasis)			
R = Monatsrendite, im Beispiel 0.3125% = 0.003125 → 0.0375/12 n = Laufzeit, im Beispiel 240 Monate bE= bestimmter Endwert, im Beispiel 143'105.11	$\frac{R}{\left(\left(1+R\right)^{n}-1\right)\cdot\left(1+R\right)}\cdot bE$		$\frac{0.003125}{\left(\left(1+0.003125\right)^{240}-1\right)\cdot\left(1+0.003125\right)}\cdot143'105.11=400.00$			

WAS	FORMEL		ZAHLE	ZAHLENBEISPIEL	
Notwendige Rendite für Sparzielerreichun	g (nachschüssig)		l		
N = Gesamtlaufzeit in Monaten, im Beispiel	ZAHLENBEIS	SPIEL MIT EINGAI	BE IM HP10 bil	[+	
240 Monate (20 Jahre)	N	I/YR	PV	PMT	FV
I/YR = Gesuchte Jahresrendite	240		0	(-)500	200'000
PV = 0 (noch kein Sparkapital vorhanden) PMT = (-)500 (monatlicher Sparbeitrag)	Lösung:	4.76			
FV = 200'000 (gewünschtes Endkapital)					
Notwendige Rendite für Sparzielerreichun	g (vorschüssig)				
N = Gesamtlaufzeit in Monaten, im Beispiel	ZAHLENBEIS	SPIEL MIT EINGAI	BE IM HP10 bil	[+	
240 Monate (20 Jahre)	N	I/YR	PV	PMT	FV
I/YR = Gesuchte Jahresrendite	240	•	0	(-)500	200'000
PV = 0 (noch kein Sparkapital vorhanden) PMT = (-)500 (monatlicher Sparbeitrag)	Lösung:	4.73			
FV = 200'000 (gewünschtes Endkapital)					
Spardauer für Sparzielerreichung (nachsch	hüssig)				
N = Gesuchte Anzahl Monate	ZAHLENBEIS	SPIEL MIT EINGAI	BE IM HP10 bil	[+	
I/YR = 3.25% (Jahresrendite)	N	I/YR	PV	PMT	FV
		3.25	0	(-)450	150'000
PV = 0 (noch kein Sparkapital vorhanden) PMT = (-)450 (monatlicher Sparbeitrag) FV = 150'000 (gewünschtes Endkapital)	237.85	Lösung			
		3.25			

WAS FORMEL ZAHLENBEISPIEL

Spardauer für Sparzielerreichung (vorschüssig)

N = Gesuchte Anzahl Monate

I/YR = 3.25% (Jahresrendite)

PV = 0 (noch kein Sparkapital vorhanden)

PMT = (-)450 (monatlicher Sparbeitrag)

FV = 150'000 (gewünschtes Endkapital)

ZAHLENBEISPIEL MIT EINGABE IM HP10 bII+

N	I/YR	PV	PMT	FV
	3.25	0	(-)450	150'000
237.37	Lösung			

Entspardauer bei monatlichen Bezügen (nachschüssig)

N = Gesuchte Anzahl Monate

I/YR = 2% (Jahresrendite)

PV = 120'000 (vorhandenes Sparkapital)

PMT = 600 (monatlicher Bezug)

FV = 0 (Kapital ist nach den gesuchten Anzahl

Monatsbezügen aufgebraucht)

ZAHLENBEISPIEL MIT EINGABE IM HP10 bII+

N	I/YR	PV	PMT	FV
	2	(-)120'000	600	0
243.48	Lösung			

Entspardauer bei monatlichen Bezügen (vorschüssig)

N = Gesuchte Anzahl Monate

I/YR = 2% (Jahresrendite)

PV = 120'000 (vorhandenes Sparkapital)

PMT = 600 (monatlicher Bezug)

FV = 0 (Kapital ist nach den gesuchten Anzahl

Monatsbezügen aufgebraucht)

ZAHLENBEISPIEL MIT EINGABE IM HP10 bII+

N	I/YR	PV	PMT	FV
	2	(-)120'000	600	0
242.98	Lösung			

WAS	FORMEL		ZAHLENE	ZAHLENBEISPIEL	
Endkapital bei monatlichen Sparbeiträgen (nachschüssig)				
N = Gesamtlaufzeit in Monaten, im Beispiel 180	ZAHLENBEIS	SPIEL MIT EING	ABE IM HP10 bII+		
Monate (15 Jahre)	N	I/YR	PV	PMT	FV
I/YR = 4% (Jahresrendite) PV = 0 (noch kein Sparkapital vorhanden)	180	4	0	(-)300	
PMT = (-)300 (monatlicher Sparbeitrag)	Lösung				73'827.15
FV = Endkapital nach der Spardauer					
Endkapital bei monatlichen Sparbeiträgen (vorschüssig)				
N = Gesamtlaufzeit in Monaten, im Beispiel 180	ZAHLENBEISPIEL MIT EINGABE IM HP10 bII+				
Monate (15 Jahre) I/YR = 4% (Jahresrendite)	N	I/YR	PV	PMT	FV
PV = 0 (noch kein Sparkapital vorhanden)	180	4	0	(-)300	
PMT = (-)300 (monatlicher Sparbeitrag)	Lösung				74'073.24
FV = Endkapital nach der Spardauer					
Notwendiges bestehendes Kapital für Erreic	hung Sparziel b	ei monatlichen S _l	parbeiträgen (nachsc	hüssig)	
N = Gesamtlaufzeit in Monaten, im Beispiel 180	ZAHLENBEIS	SPIEL MIT EING	ABE IM HP10 bII+		
Monate (15 Jahre)	N	I/YR	PV	PMT	FV
I/YR = 4% (Jahresrendite) PV = Notwendiges vorhandenes Vermögen PMT = (-)300 (monatlicher Sparbeitrag)	180	4		(-)300	100'000
	Lösung		(-)14'378.31		
FV = 100'000 (gewünschtes Endkapital nach der Spardauer)					

WAS	FORMEL	ZAHLENBEISPIEL			
Notwendiges bestehendes Kapital für Erreic	hung Sparziel bei monat	lichen Sparbeitr	ägen (vorschi	issig)	
N = Gesamtlaufzeit in Monaten, im Beispiel 180	ZAHLENBEISPIEL M	T EINGABE IM	HP10 bII+		
Monate (15 Jahre) I/YR = 4% (Jahresrendite) PV = Notwendiges vorhandenes Vermögen PMT = (-)300 (monatlicher Sparbeitrag)	N I/Y 180 4 Lösung		·)14'243.11	PMT (-)300	FV 100'000
FV = 100'000 (gewünschtes Endkapital nach der Spardauer)					
Sparplanberechnung nachschüssig (Jahresp	rämie)				
R = einfache Jahresrendite, im Beispiel 3.75% = 0.0375 n = Laufzeit, im Beispiel 20 Jahre S = Jährlicher Sparbetrag, im Beispiel 4'800.00	$\frac{\left(1+R\right)^{n}-1}{R}\cdot S$		$\frac{(1+0.0375)^{20}-1}{0.0375} \cdot 4'800.00 = 139'283.46$		
Sparplanberechnung nachschüssig (Monats)	orämie)				
R = Monatsrendite, im Beispiel 0.3125% = 0.003125 → 0.0375/12 n = Laufzeit, im Beispiel 240 Monate (20 Jahre) S = Monatlicher Sparbetrag, im Beispiel 400.00	$\frac{(1+R)^n-1}{R}\cdot S$		$\frac{\left(1+0.003125\right)^{240}-1}{0.003125} \cdot 400.00 = 142'659.30$		
Sparplanberechnung vorschüssig (Jahresprä	imie)				
R = einfache Jahresrendite, im Beispiel 3.75% = 0.0375 n = Laufzeit, im Beispiel 20 Jahre S = Jährlicher Sparbetrag, im Beispiel 4'800.00	$\frac{\left((1+R)^n-1\right)\cdot(1+R)}{R}\cdot S$		$\frac{((1+0.0375))}{0.0}$	$\frac{(20-1)\cdot(1+R)}{2375}\cdot 4$	4'800.00 = 144'506.59

WAS	FORMEL	ZAHLENBEISPIEL
Sparplanberechnung vorschüssig (Monatspra	ämie)	
R = Monatsrendite, im Beispiel 0.3125% = 0.003125 →0.0375/12 n = Laufzeit, im Beispiel 240 Monate (20 Jahre) S = Monatlicher Sparbetrag, im Beispiel 400.00	$\frac{\left(\!\!\left(1+R\right)^n-1\right)\!\cdot\!\left(1+R\right)}{R}\!\cdot\!S$	$\frac{\left((1+0.003125)^{240}-1\right)\cdot \left(1+0.003125\right)}{0.003125}\cdot 400.00 = 143'105.11$
Kapitalbedarf für gewünschte Rente (nachsch	hüssig auf Jahresbasis) über einen besti	mmten Zeitraum (Annuität)
R = einfache Jahresrendite, im Beispiel 3.75% = 0.0375 n = Laufzeit, im Beispiel 20 Jahre RB = Rentenbezug, im Beispiel 24'000.00	$\frac{\left(1+R\right)^{n}-1}{\left(1+R\right)^{n}\cdot R}\cdot RB$	$\frac{(1+0.0375)^{20}-1}{(1+0.0375)^{20}\cdot 0.0375} \cdot 24'000.00 = 333'508.90$
Kapitalbedarf für gewünschte Rente (nachsch	hüssig auf Monatsbasis) über einen best	immten Zeitraum (Annuität)
R = Monatsrendite, im Beispiel 0.3125% = 0.003125 → 0.0375/12 n = Laufzeit, im Beispiel 240 Monate RB = Rentenbezug, im Beispiel 2'000.00	$\frac{\left(1+R\right)^{n}-1}{\left(1+R\right)^{n}\cdot R}\cdot RB$	$\frac{(1+0.003125)^{240}-1}{(1+0.003125)^{240}\cdot 0.003125} \cdot 2'000.00 = 337'331.66$
Kapitalbedarf für gewünschte Rente (vorschi	üssig auf Jahresbasis) über einen bestim	ımten Zeitraum (Annuität)
R = einfache Jahresrendite, im Beispiel 3.75% = 0.0375 n = Laufzeit, im Beispiel 20 Jahre RB = Rentenbezug, im Beispiel 24'000.00	$\frac{((1+R)^n-1)\cdot (1+R)}{(1+R)^n\cdot R}\cdot RB$	$\frac{((1+0.0375)^{20}-1)\cdot(1+0.0375)}{(1+0.0375)^{20}\cdot0.0375}\cdot24'000.00=346'015.48$

WAS	FORMEL	ZAHLENBEISPIEL
Kapitalbedarf für gewünschte Rente (vorsch	üssig auf Monatsbasis) über einen besti	mmten Zeitraum (Annuität)
R = Monatsrendite, im Beispiel 0.3125% = 0.003125 → 0.0375/12 n = Laufzeit, im Beispiel 240 Monate RB = Rentenbezug, im Beispiel 2'000.00	$\frac{((1+R)^n-1)\cdot(1+R)}{(1+R)^n\cdot R}\cdot RB$	$\frac{((1+0.003125)^{240}-1)\cdot(1+0.003125)}{(1+0.003125)^{240}\cdot0.003125}\cdot2'000.00$ $= 338'385.82$
Rentenhöhe (nachschüssig auf Jahresbasis) b	oei vorhandenem Kapital über einen be	stimmten Zeitraum
R = einfache Jahresrendite, im Beispiel 3.75% = 0.0375 n = Laufzeit, im Beispiel 20 Jahre K = vorhandenes Kapital, im Beispiel 333'508.90	$\frac{\left(1+R\right)^{n}\cdot R}{\left(1+R\right)^{n}-1}\cdot K$	$\frac{(1+0.0375)^{20} \cdot 0.0375}{(1+0.0375)^{20} - 1} \cdot 333508.90 = 24000.00$
Rentenhöhe (nachschüssig auf Monatsbasis)	bei vorhandenem Kapital über einen b	estimmten Zeitraum
R = Monatsrendite, im Beispiel 0.3125% = 0.003125 → 0.0375/12 n = Laufzeit, im Beispiel 240 Monate K = vorhandenes Kapital, im Beispiel 337'331.66	$\frac{\left(1+R\right)^{n}\cdot R}{\left(1+R\right)^{n}-1}\cdot K$	$\frac{\left(1+0.003125\right)^{240}\cdot0.003125}{\left(1+0.003125\right)^{240}-1}\cdot337'331.66=2'000.00$
Rentenhöhe (vorschüssig auf Jahresbasis) be	ei vorhandenem Kapital über einen best	cimmten Zeitraum
R = einfache Jahresrendite, im Beispiel 3.75% = 0.0375 n = Laufzeit, im Beispiel 20 Jahre K = vorhandenes Kapital, im Beispiel 346'015.48	$\frac{(1+R)^n \cdot R}{((1+R)^n-1) \cdot (1+R)} \cdot K$	$\frac{(1+0.0375)^{20} \cdot 0.0375}{((1+0.0375)^{20}-1) \cdot (1+0.0375)} \cdot 346'015.45 = 24'000.00$

WAS	FORMEL	ZAHLENBEISPIEL
Rentenhöhe (vorschüssig auf Monatsbasis) b	pei vorhandenem Kapital über einen bes	timmten Zeitraum
R = Monatsrendite, im Beispiel 0.3125% = 0.003125 → 0.0375/12 n = Laufzeit, im Beispiel 240 Monate K = vorhandenes Kapital, im Beispiel 338'385.82	$\frac{(1+R)^n \cdot R}{\left((1+R)^n - 1\right) \cdot (1+R)} \cdot K$	$\frac{\left(1+0.003125\right)^{240}\cdot0.003125}{\left(\left(1+0.003125\right)^{240}-1\right)\cdot\left(1+0.003125\right)}\cdot338'385.82=2'000.00$
Berechnung des Emissionspreises bei einer	Geldmarktbuchforderung	
R = gewünschte Jahresrendite in mathematischer Schreibweise, im Beispiel = 2.75% = 0.0275 T = Laufzeit der Geldmarktbuchanlage, im Beispiel 270 Tage = 270	$\frac{100}{1 + \left(\frac{\text{Tage} \cdot R}{360}\right)}$	$\frac{100}{1 + \left(\frac{270 \cdot 0.0275}{360}\right)} = 97.979\% = 97.98\%$
Berechnung der Jahresrendite einer Geldma	rktbuchforderung bei vorhandenem Em	issionspreis
Rückzahlungspreis ist in aller Regel zu 100% Emissionspreis im Beispiel = 97.98% Laufzeit im Beispiel = 270 Tage	Rückzahlungspreis - Emissionspreis Emissionspreis Laufzeit der Geldmarktbuchanlage	$\frac{100 - 97.98}{97.98} \cdot 360 = 0.02748 = 2.75\%$
Periodenrendite einer Obligation		
Endpreis im Beispiel 101.50% = 101.50 Anfangspreis im Beispiel 100.75% = 100.75 C = Coupon, im Beispiel 3% = 3	Endpreis – Anfangspreis + C Anfangspreis	$\frac{101.50 - 100.75 + 3}{100.75} = 0.03722 = 3.72\%$

WAS	FORMEL	ZAHLENBEISPIEL
Couponrendite einer Obligation		
C = Coupon, im Beispiel 3% = 3 Obligationenpreis vor einem Jahr im Beispiel 100.75% = 100.75	C Obligationenpreis vor einem Jahr	$\frac{3}{100.75} = 0.02977 = 2.98\%$
Preisrendite einer Obligation		
Endpreis im Beispiel 101.50% = 101.50 Anfangspreis im Beispiel 100.75% = 100.75	Endpreis - Anfangspreis Anfangspreis	$\frac{101.50 - 100.75}{100.75} = 0.00744 = 0.74\%$
Direkte Rendite einer Obligation		
C = Coupon, im Beispiel 3% = 3 Aktueller Obligationenpreis im Beispiel 101.50% = 101.50	C aktueller Obligationenpreis	$\frac{3}{101.50} = 0.02955 = 2.96\%$
Direkte Rendite einer Obligation nach Steue	rn und Inflation	
C = Coupon, im Beispiel 3% = 0.03 S = Grenzsteuersatz, im Beispiel 25% = 0.25 Aktueller Obligationenpreis, im Beispiel 101.50% = 1.0150 I = Inflation, im Beispiel 1% = 0.01	$\frac{1 + \left(\frac{C - C \cdot S}{\text{aktueller Obligationenpreis}}\right)}{(1 + I)} - 1$	$\frac{1 + (\frac{0.03 - 0.03 \cdot 0.25}{1.0150})}{1.01} - 1 = 0.0120 = 1.20\%$
Berechnung der Verfallrendite nach Praktik	ermethode (guter Schätzwert)	
C = Coupon, im Beispiel 4% = 4 Rückzahlungspreis im Beispiel 100% = 100 Tagespreis; im Beispiel 105.77% = 105.77 n = Restlaufzeit, im Beispiel 3 Jahre = 3	$\frac{C + \frac{\text{R\"{u}}\text{ckzahlungspreis} - Tagespreis}{n}}{\frac{\text{R\"{u}}\text{ckzahlungspreis} + Tagespreis}{2}}$	$\frac{4 + \frac{100 - 105.77}{3}}{\frac{100 + 105.77}{2}} = 0.02018 = 2.02\%$

WAS	FORMEL		ZAHLENBEISPIEL				
Berechnung der Verfallrendite (Annäherun	gsberechnu	ng)					
C = Coupon, im Beispiel 4% = 4 Rückzahlungspreis im Beispiel 100% = 100 Tagespreis im Beispiel 105.77% = 105.77 n = Restlaufzeit, im Beispiel 3 Jahre = 3	$C + \frac{\text{R\"{u}ckzahlungspreis} - \text{Tagespreis}}{n}$		$4 + \frac{100 - 105.77}{3} = 2.076 = 2.08\%$				
Berechnung der Verfallrendite							
N = Gesamtlaufzeit in Jahren, im Beispiel 5 PV = (-)101.50 (aktueller Obligationenkurs)	ZAHLEN	BEISPIEL MI	T EINGABE IM	HP10 b	oII+		
PMT = 3 (jährlicher Coupon)		N	I/YR PV		PV	PMT	FV
FV = 100 (Rückzahlung bei Fälligkeit)		5			(-)101.50	3	100
I/YR = Gesuchte Verfallrendite vor Steuern		Lösung	2.68				
und Inflation							
Berechnung der Verfallrendite nach Steuer	n und Inflati	on					
R = Verfallrendite, im Beispiel 2.68% = 0.0268 C = Coupon, im Beispiel 3% = 0.03 S = Grenzsteuersatz, im Beispiel 25% = 0.25;	Schritt 1: Berechnung der Verfallrendite vor Steuern und Inflation (siehe oben) I/YR = 2.68%						
0.03 x 0.25 = 0.0075	1/ 111 - 2.00/0						
I = Inflation, im Beispiel 1% = 0.01	Schritt 2: Korrektur der Verfallrendite um Steuern und Inflation						
	(1+R)-(C·S) (1+I)	<u>()</u> – 1		1+0	1.01	- 1 = 0.0092 =	= 0.92%

WAS	FORMEL	ZAHLENBEISPIEL
Marchzinsberechnung bei einer Obligation		
N = Nominalwert, im Beispiel CHF 100'000 C = Coupon, im Beispiel 4% = 0.04 n = Laufzeit, im Beispiel 165 Tage	$\frac{\mathbf{N} \cdot \mathbf{C} \cdot \mathbf{n}}{360}$	$\frac{100'000 \cdot 0.04 \cdot 165}{360} = 1'833.33$
Wandelpreis einer Wandelobligation		
Notwendiger Nominalbetrag im Beispiel CHF 5'000.00 = 5'000 Anzahl Basiswerte im Beispiel 8.725	Notwendiger Nominalbetrag Anzahl Basiswerte	$\frac{5'000}{8.725} = 573.065 = 573.07$
Wandelparität einer Wandelobligation		
NN = Notwendiger Nominalbetrag, im Beispiel CHF 5'000.00 = 5'000 Obligationenkurs im Beispiel 102% = 1.02 Anzahl Basiswerte im Beispiel 8.725	NN · Obligationenkurs Anzahl Basiswerte	$\frac{5'000 \cdot 1.02}{8.725} = 584.527 = 584.53$
Wandelprämie über eine Wandelobligation		
Wandelparität im Beispiel 584.53 Börsenkurs Basiswert im Beispiel 525.00	Wandelparität Börsenkurs Basiswert	$\frac{584.53}{525.00} - 1 = 0.11339 = 11.34\%$
Wandelprämie über eine Wandelobligation a	uf Jahresbasis	
Wandelprämie im Beispiel 11.34% = 0.1134 (Rest)-Laufzeit 3 Jahre und 9 Monate = 3.75	Wandelprämie (Rest) - Laufzeit Wandelobligation	$\frac{0.1134}{3.75} = 0.03024 = 3.02\%$

WAS	FORMEL	ZAHLENBEISPIEL	
Renditebereinigtes Kursrisiko einer Wandel	obligation		
Kurs der Wandelobligation im Beispiel 102% = 1.02 Barwert im Beispiel 98% = 0.98	Kurs der Wandelobligation - Barwert Kurs der Wandelobligation	$\frac{1.02 - 0.98}{1.02} = 0.03921 = 3.92\%$	
Optionsparität einer Optionsobligation			
Anzahl Optionen, im Beispiel 50 OP = Optionspries, im Beispiel 0.75 A = Ausübungspreis, im Beispiel 212.50	Anzahl Optionen · OP + A	50 · 0.75 + 212.50 = 250.00	
Optionsprämie über eine Optionsobligation			
Optionsparität im Beispiel 250.00 Börsenkurs Basiswert im Beispiel 230.00	Optionsparität Börsenkurs Basiswert -1	$\frac{250.00}{230.00} - 1 = 0.08695 = 8.70\%$	
Optionsprämie über eine Optionsobligation	auf Jahresbasis		
Optionsprämie im Beispiel 8.70% = 0.0870 (Rest)-Laufzeit 4 Monate und 3 Tage = 0.3417	Optionsprämie (Rest) - Laufzeit der Optionsobligation	$\frac{0.0870}{0.3417} = 0.25460 = 25.46\%$	
Barwertberechnung einer Obligation			
C = Coupon, im Beispiel 4% = 4 i = aktueller Marktzins, im Beispiel 2% = 0.02 n = Laufzeit, im Beispiel 3 Jahre Rückzahlungspreis ist in aller Regel 100%	$C \cdot \frac{(1+i)^n - 1}{(1+i)^n \cdot i} + \frac{\text{Rückzahlungspreis}}{(1+i)^n}$	$4 \cdot \frac{(1+0.02)^3 - 1}{(1+0.02)^3 \cdot 0.02} + \frac{100}{(1+0.02)^3} = 105.767 = 105.77\%$	

WAS	FORMEL	ZAHLENBEISPIEL
Berechnung des ungefähren Barwertes einer	Obligation (Annäherungsberechnu	ng)
C = Coupon, im Beispiel 4% = 4 i = aktueller Marktzins, im Beispiel 2% = 0.02 n = Laufzeit, im Beispiel 3 Jahre Rückzahlungspreis ist in aller Regel 100%	(C-i)·n + Rückzahlungspreis	$(4-2)\cdot 3 + 100 = 106 \approx 106\%$
Berechnung der Macaulay Duration		
i = aktueller Marktzins, im Beispiel 2% = 0.02 n = Laufzeit, im Beispiel 3 Jahre = 3 C = Coupon, im Beispiel 4% = 4 R = Rückzahlungspreis, im Beispiel 100%	$\frac{1+i}{i} - \frac{n \cdot C + R \cdot (1+i-n \cdot i)}{C \cdot ((1+i)^n - 1) + R \cdot i}$	$\frac{1+0.02}{0.02} - \frac{3 \cdot 4 + 100 \cdot (1+0.02 - 3 \cdot 0.02)}{4 \cdot ((1+0.02)^3 - 1) + 100 \cdot 0.02} = 2.889 = 2.89 \text{ Jahre}$
Berechnung der Modified Duration		
D = Macaulay Duration, im Beispiel 2.89 Y = bisherige Verfallrendite, im Beispiel 2% = 0.02	D 1+ Y	$\frac{2.89}{1.02} = 2.833 = 2.83$
Berechnung der approximativen Preisänder	ung einer Obligation	
M = Modified Duration, im Beispiel 2.83 a = Anpassung der Verfallrendite, im Beispiel erhöht sich die Verfallrendite um 0.25%	– M·a	$-2.83 \cdot 0.25 = -0.7075 = -0.71\%$
Merke: Für die Berechnung wird die Modified Dura zuführen.	 ntion immer mit einem Minuszeichen ver	rwendet. Dies ist auf die mathematischen Gegebenheiten zurück-

WAS	FORMEL	ZAHLENBEISPIEL
Aussagekraft der approximativen Preisänd	erung	
B = Barwert in %, im Beispiel 105.77% P = Preisänderung, im Beispiel -0.71% = -0.0071	$B \cdot (1 - P)$	$105.77 \cdot \left(1-0.0071\right) = 105.019 = 105.02\%$ Der Barwert von 105.77% reduziert sich bei einer Erhöhung der Verfallrendite von 0.25% um – 0.71%, in diesem Beispiel auf 105.02%
B = Barwert in %, im Beispiel 105.77% P= Preisänderung, im Beispiel 0.71% = 0.0071	$\mathbf{B} \cdot (1 + \mathbf{P})$	$105.77 \cdot \left(1+0.0071\right) = 106.520 = 106.52\%$ Der Barwert von 105.77% erhöht sich bei einer Reduktion der Verfallrendite von 0.25% um 0.71%, in diesem Beispiel auf 106.520 = 106.52%
Berechnung Wert Bezugsrecht bei einer Ak	tienkapitalerhöhung	
Aktueller Börsenkurs, im Beispiel 49.50 BP = Bezugspreis für neue Aktie, im Beispiel 42.00 BV = Bezugsverhältnis, im Beispiel 13:2	aktueller Börsenkurs - BP (BV)+1	$\frac{49.50 - 42.00}{(13:2) + 1} = 1.00$
	oder	
aB = aktueller Börsenkurs, im Beispiel 49.50 AaA = Anzahl Alter Aktien, im Beispiel 13 AnA = Anzahl neuer Aktien, im Beispiel 2 BP = Bezugspreis für die neue Aktie, im Beispiel 42.00	$aB - \frac{(AaA \cdot aB + AnA \cdot BP)}{AaA + AnA}$	$49.50 - \frac{(13 \cdot 49.50 + 2 \cdot 42.00)}{13 + 2} = 1.00$

WAS	FORMEL	ZAHLENBEISPIEL	
Berechnung theoretischer Aktienkurs nach Kapitalerhöhung			
AaA = Anzahl Alter Aktien, im Beispiel 13 aB = aktueller Börsenkurs, im Beispiel 49.50 AnA = Anzahl neuer Aktien, im Beispiel 2 BP = Bezugspreis für die neue Aktie, im Beispiel 42.00	$\frac{(AaA \cdot aB + AnA \cdot BP)}{AaA + AnA}$ oder	$\frac{(13 \cdot 49.50 + 2 \cdot 42.00)}{13 + 2} = 48.50$	
BV = Bezugsverhältnis, im Beispiel 13:2 aB = aktueller Börsenkurs, im Beispiel 49.50 BP = Bezugspreis für die neue Aktie, im Beispiel 42.00	$\frac{BV \cdot aB + BP}{(BV) + 1}$	$\frac{(13:2)\cdot 49.50 + 42}{(13:2)+1} = 48.50$	
Gewinnrendite einer Aktie	1		
Gewinn im Beispiel 6.25 Börsenkurs im Beispiel 101.35	Gewinn _(pro Aktie) Börsenkurs _(pro Aktie)	$\frac{6.25}{101.35} = 0.06166 = 6.17\%$	
Payout-Ratio einer Gesellschaft			
Bruttodividende im Beispiel 2.75 Gewinn pro Aktie im Beispiel 6.25	$\frac{\text{Bruttodividende}_{(\text{pro Aktie})}}{\text{Gewinn}_{(\text{pro Aktie})}}$	$\frac{2.75}{6.25} = 0.44 = 44.00\%$	
Dividendenrendite einer Aktie			
Bruttodividende im Beispiel 2.75 Börsenkurs im Beispiel 101.35	Bruttodividende _(pro Aktie) Börsenkurs _(pro Aktie)	$\frac{2.75}{101.35} = 0.02713 = 2.71\%$	

WAS	FORMEL	ZAHLENBEISPIEL
Cash-Flow Rendite einer Aktie		
Cash-Flow im Beispiel 7.35 Börsenkurs im Beispiel 101.35	Cash Flow _(pro Aktie) Börsenkurs _(pro Aktie)	$\frac{7.35}{101.35} = 0.07252 = 7.25\%$
Eigenkapitalrendite einer Aktie		
Gewinn pro Aktie im Beispiel 6.25 Durchschnittliches Eigenkapital pro Aktie im Beispiel 62.50	Gewinn _{pro Aktie} Durchschnittliches Eigenkapital (pro Aktie)	$\frac{6.25}{62.50} = 0.10 = 10.00\%$
Kurs-Gewinn-Verhältnis (KGV / PE) mit aktud	ellem Gewinn	
Börsenkurs im Beispiel 101.35 Gewinn im Beispiel 6.25	Börsenkurs (pro Aktie) Gewinn (pro Aktie) oder	$\frac{101.35}{6.25} = 16.216 \cong 16.2$
Gewinnrendite im Beispiel 6.1667% = 0.061667	Gewinnrendite (pro Aktie)	$\frac{1}{0.061667} = 16.216 \cong 16.2$
Kurs-Gewinn-Verhältnis (KGV / PE) mit zukü	nftigem Gewinn (Gewinnschätzung)	
Börsenkurs im Beispiel 101.35 Zukünftiger Gewinn im Beispiel 6.85 (Schätzung)	Börsenkurs (pro Aktie) Zukünftigem (geschätzter) Gewinn (pro Aktie)	$\frac{101.35}{6.85} = 14.795 \cong 14.8$
Kurs-Gewinn-Verhältnis unter Berücksichtig	ung des künftigen Gewinnwachstumes (in % ausgedrückt) (PEG; Price-Earnings to Growth Ratio)
P/E im Beispiel 14.8 Gewinnwachstum im Beispiel 12% = 12	P/E Gewinnwachstum pro Aktie	$\frac{14.8}{12} = 1.233 = 1.23$

WAS	FORMEL	ZAHLENBEISPIEL		
Kurs-Umsatz-Verhältnis (KUV / PS)				
Börsenkurs im Beispiel = 101.35 Umsatz im Beispiel = 25.25	$\frac{\text{B\"{o}rsenkurs}_{\text{pro Aktie}}}{\text{Umsatz}_{\text{(pro Aktie)}}}$	$\frac{101.35}{25.25} = 4.013 = 4.01$		
Kurs-Buchwert-Verhältnis (KUB / PB)	Kurs-Buchwert-Verhältnis (KUB / PB)			
Börsenkurs im Beispiel = 101.35 Buchwert im Beispiel = 155.55	Börsenkurs _(pro Aktie) Buchwert _(pro Aktie)	$\frac{101.35}{155.55} = 0.651 = 0.65$		
Kurs-Substanzwert-Verhältnis (KSV)				
Börsenkurs im Beispiel = 101.35 Substanzwert im Beispiel = 190.00 (im Substanzwert sind nebst dem Buchwert noch die stillen Reserven enthalten)	Börsenkurs _{pro Aktie} Substanzwert (pro Aktie)	$\frac{101.35}{190.00} = 0.533 = 0.53$		
Rendite von Anlagefonds vor Steuern (bei Thesaurierung der Erträge)				
Kaufkurs im Beispiel 100 Verkaufskurs im Beispiel 120	Verkaufskurs Kaufkurs – 1	$\frac{120}{100} - 1 = 0.20 = 20\%$		
Rendite von Anlagefonds nach Steuern (bei Thesaurierung der Erträge)				
Kaufkurs im Beispiel 100 Verkaufskurs im Beispiel 120 steuerbarer Anteil der Gesamtrendite infolge Thesaurierung der Erträge im Beispiel 2% Grenzsteuersatz im Beispiel 25%	$rac{ ext{Verkaufskurs}}{ ext{Kaufkurs}} - 1 - ext{Renditefaktor} * ext{Grenzsteuersatz}$	$\frac{120}{100} - 1 - 0.02 \cdot 0.25 = 0.1950 = 19.50\%$		

WAS	FORMEL	ZAHLENBEISPIEL
Berechnung der Sharpe Ratio		
$\begin{split} r_i &= \text{Portfoliorendite, im Beispiel} \\ 6.06\% &= 0.0606 \\ r_f &= \text{risikoloser Zinssatz, im Beispiel} \\ 1.98\% &= 0.0198 \\ \sigma_i &= \text{Volatilität, im Beispiel 14.34\%} = 0.1434 \end{split}$	$\frac{r_{i}-r_{f}}{\sigma_{i}}$	$\frac{0.0606 - 0.0198}{0.1434} = 0.2845 = 0.28$
Berechnung der Treynor Ratio		·
$\begin{aligned} r_{\rm i} &= \text{Portfoliorendite, im Beispiel} \\ 6.06\% &= 0.0606 \\ r_{\rm f} &= \text{risikoloser Zinssatz, im Beispiel} \\ 1.98\% &= 0.0198 \\ \beta_{\rm i} &= \text{Portfoliobeta, im Beispiel 1.04} \end{aligned}$	$\frac{r_i - r_f}{\beta_i}$	$\frac{0.0606 - 0.0198}{1.04} = 0.03923 = 3.92\%$
Berechnung des Jensen's Alpha		•
$\begin{split} r_i &= \text{Portfoliorendite, im Beispiel} \\ &6.06\% = 0.0606 \\ r_f &= \text{risikoloser Zinssatz, im Beispiel} \\ &1.98\% = 0.0198 \\ \beta_i &= \text{Portfoliobeta, im Beispiel 1.04} \\ r_m &= \text{Benchmarkrendite, im Beispiel} \\ &6.53\% = 0.0653 \end{split}$	$r_i - (r_f + \beta_i \cdot (r_m - r_f))$	$0.0606 - (0.0198 + 1.04 \cdot (0.0653 - 0.0198)) = -0.00652 = -0.65\%$

WAS	FORMEL	ZAHLENBEISPIEL
Berechnung der Portfoliorendite, bezogen au	uf das Marktrisiko	
Portfoliobeta, im Beispiel 1.08 BR = Benchmarkrendite, im Beispiel 6.75% = 0.0675	Portfoliobeta · BR	$1.08 \cdot 0.0675 = 0.0729 = 7.29\%$
Berechnung des Portfoliobetas		
β = Beta, im Beispiel A = 1.07 und B = 0.93 DW = Depotwert, im Beispiel A = 100 und B = 200 GDW = Gesamtdepotwert, im Beispiel 300	$\frac{\beta_{A} \cdot DW_{A} + \beta_{B} \cdot DW_{B}}{GDW}$	$\frac{1.07 \cdot 100 + 0.93 \cdot 200}{300} = 0.9766 \cong 0.98$
		oder
		$\frac{100}{300} \cdot 1.07 + \frac{200}{300} \cdot 0.93 = 0.9766 \cong 0.98$
Innerer Wert pro Calloption (bei gegebener	Ratio)	I
KB = Kurs Basiswert, im Beispiel 45.00 A = Ausübungspreis, im Beispiel 40.00 R = Ratio, im Beispiel 20:1 Hinweis: Der innere Wert beträgt mindestens 0.	KB-A R	$\frac{45.00 - 40.00}{20} = 0.25$

WAS	FORMEL	ZAHLENBEISPIEL	
Innerer Wert pro Calloption (bei gegebenem Bezugsverhältnis)			
KB = Kurs Basiswert, im Beispiel 45.00 A = Ausübungspreis, im Beispiel 40.00 BV = Bezugsverhältnis, im Beispiel 1:20 Hinweis: Der innere Wert beträgt mindestens 0.	(KB-A)·BV	$(45.00 - 40.00) \cdot 0.05 = 0.25$	
Zeitwert pro Calloption			
OP = Optionsprämie, im Beispiel 0.40 iW = innerer Wert, im Beispiel 0.25	OP – iW	0.40 - 0.25 = 0.15	
Innerer Wert pro Putoption (bei gegebener I	Ratio)		
A = Ausübungspreis, im Beispiel 45.00 KB = Kurs Basiswert, im Beispiel 40.00 R = Ratio, im Beispiel 20:1 Hinweis: Der innere Wert beträgt mindestens 0.	$\frac{A - KB}{R}$	$\frac{45.00 - 40.00}{20} = 0.25$	
Innerer Wert pro Putoption (bei gegebenem Bezugsverhältnis)			
A = Ausübungspreis, im Beispiel 45.00 KB = Kurs Basiswert, im Beispiel 40.00 BV = Bezugsverhältnis, im Beispiel 1:20 Hinweis: Der innere Wert beträgt mindestens 0.	(A - KB)·BV	$(45.00 - 40.00) \cdot 0.05 = 0.25$	
Zeitwert pro Putoption	Zeitwert pro Putoption		
OP = Optionsprämie, im Beispiel 0.40 iW = innerer Wert, im Beispiel 0.25	OP – iW	0.40 - 0.25 = 0.15	

WAS	FORMEL	ZAHLENBEISPIEL
Wahrscheinlichkeitsberechnungen	L	
Ein-Sigma-Fall (68%)		
Rendite im Beispiel 5%	Rendite plus 1 x Volatilität	5% + 15% = 20%
Volatilität im Beispiel 15%	Rendite minus 1 x Volatilität	5% - 15% = -10%
		Mit einer Wahrscheinlichkeit von rund 68% wird die Aktienrendite im Bereich zwischen -10% und +20% liegen.
Zwei-Sigma-Fall (95%)		
Rendite im Beispiel 5%	Rendite plus 2 x Volatilität	5% + 2 x 15% = 35%
Volatilität im Beispiel 15%	Rendite minus 2 x Volatilität	5% - 2 x 15% = -25%
		Mit einer Wahrscheinlichkeit von rund 95% wird die Aktienrendite im Bereich zwischen -25% und +35% liegen.
Drei-Sigma-Fall (99%)		
Rendite im Beispiel 5%	Rendite plus 3 x Volatilität	5% + 3 x 15% = 50%
Volatilität im Beispiel 15%	Rendite minus 3 x Volatilität	5% - 3 x 15% = -40%
		Mit einer Wahrscheinlichkeit von rund 99% wird die Aktienrendite im Bereich zwischen -40% und +50% liegen.